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Abstract
Drift velocity correlation functions are investigated analytically in a
phenomenological approach and numerically through Monte Carlo simulation.
The simulation takes into account electron–phonon and electron–electron
scattering. The thermodynamic equilibrium state is investigated. Analytical
results are in good agreement with those obtained by the Monte Carlo method.

1. Introduction

Fluctuation phenomena in semiconductors have been intensively investigated over the last
three decades [1–3]. They are particularly important in electron transport in semiconductors.
Fluctuation effects have been conventionally investigated without taking into account Coulomb
electron–electron (e–e) scattering. However at sufficiently high electron densities, it is
necessary to take into account the e–e scattering contribution to the total distribution function
and related correlators.

The correlators of various kinetic quantities in the presence of e–e collisions have been
studied recently by the numerical Monte Carlo (MC) method [4–8]. The cross-correlation
has been found to be essential for the noise properties of semiconductors (see also [9, 10]).
However, it is interesting to describe the behaviour of the correlators analytically.

The present paper is aimed at the analytical and MC description of electron drift velocity-
to-drift velocity correlation functions in the presence of e–e collisions.

Problem specification and definitions of velocity correlation functions are given in
section 2. Phenomenological theory is described in section 3. The results of the analytical
approach are compared with the numerical data in section 4. Conclusions are made in section 5.

2. Problem specification

The electron drift velocity-to-drift velocity correlation function is defined as an average of the
product of two separated in time electron drift velocities Vd(t). It splits naturally into two
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Figure 1. Relaxation of electron velocity-to-velocity correlation function coefficients in GaAs.
Thermodynamic equilibrium state. Phonons and e–e scattering mechanisms are included. Points—
MC, curves—analytical approximation by equations (11).

parts, namely the auto- and cross-correlator:

δVd(t1)δVd(t1 + t) = 1

N

{
1

N

∑
i

δVi(t1)δVi(t1 + t)+
1

N

∑
i �= j

δVi (t1)δVj(t1 + t)

}
. (1)

Here Vd(t) = ∑N
i=1

Vi(t)
N is the instantaneous drift velocity at time moment t , Vi(t) is the

velocity of the i th electron, and N is the number of electrons in the ensemble. The bars denote
averaging over time t1, or over the ensemble at different t1 and t1 + t .

Equation (1) allows for defining the average electron velocity-to-velocity correlator as

�total(t) ≡ NδVd(t1)δVd(t1 + t) = �auto(t) + �cross(t). (2)

If the e–e scattering is neglected, the cross-correlation function �cross(t) is zero, because
the motion of individual electrons is independent. In the case of high electron density, the
contribution of the cross-correlation function �cross(t) to the total correlation �total(t) appears
to be significant.

The values of correlators at thermodynamic equilibrium have been calculated for the
parabolic model of the � valley in GaAs. The material parameters correspond to those listed
in [11]. Electron scattering on nonelastic acoustic and optical modes of lattice vibrations, as
well as e–e scattering (at the electron density of ne = 1015 cm−3) is taken into account. Inter-
electron collisions are treated in the Brooks–Herring approximation. Standard expressions [12]
for electron scattering rates are used. The calculations are performed by the modified combined
scattering rate (CSR) method proposed in [6–8]. The main features of this method consist of
synchronous N electron ensemble motion. The ‘time of free flight of the system’ is defined
from the sum of the each electron scattering rate on the thermal bath and on the all remaining
electrons. The CSR technique avoids the short-time step procedure and a large electron number
inherent to conventional ensemble MC simulation.

The typical result of MC calculations of the velocity-to-velocity correlator obtained in the
case of GaAs is shown in figure 1. The plotted correlation coefficient c(t) is determined as
the ratio of the respective correlation function to initial total correlation function �total(0). In
thermodynamic equilibrium, when �cross(0) = 0, the latter is equal to �total(0) = �auto(0) =
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V 2 = kT/m. In our case the lattice temperature is T = 80 K and the mean square of electron
velocity is V 2 ≈ 1.81 × 1010 m2 s−2.

As is seen from figure 1, strong velocity-to-velocity cross-correlation arises in the presence
of e–e collisions, with a maximum at the time moment when the auto-correlation function decay
is the fastest.

We shall describe further the features of electron velocity-to-velocity correlation functions
analytically in a phenomenological way and compare with numerical MC calculations. It is
well known that the e–e scattering intensity rapidly decreases with electric field strength.
The role of the e–e scattering contribution in the correlation manifests significantly at the
thermodynamic equilibrium, which will be considered hereafter for the sake of simplicity.

3. Phenomenological theory

Let us start with the simplified Boltzmann–Langevin equation for the fluctuation distribution
function. In the state of thermodynamic equilibrium it can be written as

dδFp(t)

dt
= −δFp(t)

τp
− δFp(t) − δFM

p (t)

τee
+ yp(t). (3)

Here Fp(t) is the instantaneous electron momentum distribution function, FM
p (t) is the drifted

Maxwellian distribution corresponding to the Fp(t) distribution at time t and yp(t) describes
the Langevin random force (for example, see [1]). In our case the rate of fluctuation relaxation
is governed by the lattice and e–e scattering mechanisms.

The first term on the right-hand side of equation (3) ensures the relaxation of instantaneous
distribution Fp(t) to the equilibrium distribution during lattice relaxation time τp. The second
term is written in accordance with the Gross–Bhatnager–Krook approach [13, 14]. Its form is
based on the property of the instantaneous electron distribution function to acquire symmetric
form (the drifted Maxwellian distribution) in the e–e scattering time τee under the influence of
e–e scattering. Liboff in his textbook gives considerable attention to this approach [14] (see
also [15]). Electron momentum can be intensively scattered by impurity centres too, but the
energy of electrons is conserved in this scattering process. Even in this simple approach we
cannot predict the final distribution that will result under the influence of impurity scattering.
Therefore, we will omit the impurity scattering.

The term δFM
p (t) describes the relaxation of a drifted Maxwellian distribution. Electron–

electron scattering does not tend to bring either FM
p (t) or Fp(t) to the thermodynamic

equilibrium form, because the average energy and momentum do not change during mutual
e–e collisions. So, the drifted Maxwellian distribution is supposed to relax only under the
influence of lattice scattering during the corresponding scattering time τp. Therefore, we have
used δFM

p (t) = δFM
p (0) exp(−t/τp).

Then, we multiply equation (3) by the initial distribution function fluctuation δFp1(t1),
and average the product over time or over the ensemble. Let us denote the correlator
δFp1(t1)δFp(t1 + t) as δFp1(0)δFp(t)). Now we can write the correlator dynamic equation as:

dδFp1(0)δFp(t)

dt
= −δFp1(0)δFp(t)

τp
− δFp1(0)δFp(t) − δFp1(0)δFM

p (0) exp(−t/τp)

τee
. (4)

The last term in equation (3) representing a random force vanishes because this force is δ-
correlated in time. We have here the term δFp1(0)δFM

p (0), which describes the correlation
between the initial fluctuations of an actual distribution and the drifted Maxwellian distribution.
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The drifted Maxwellian distribution corresponds to the actual electron distribution function at
any instant. These two fluctuations are related in the following way:

δFM
p (0) = δFp(0) + �Fp(0), (5)

where �Fp(0) is the deviation between them. Because of the chaotic behaviour of �Fp(0)

we assume that

δFp1(0)δFM
p (0) = δFp1(0)δFp(0). (6)

We are interested in the velocity-to-velocity correlators; therefore we multiply the
equation (4) by Vi1(0)Vj(t) and sum it up by p1 and p.

Finally, we obtain the phenomenological equation describing the relaxation of the total
velocity-to-velocity correlator coefficient ctotal(t) = cauto(t) + ccross(t) in the thermodynamic
equilibrium

dctotal(t)

dt
= −ctotal(t)

τp
− ctotal(t) − ctotal(0) exp(−t/τp)

τee
. (7)

Now the separate parts of the correlation function will be described. The equation of auto-
correlation follows directly from a simple reasoning that a single electron feels both the lattice
and neighbouring electrons as a scattering background and lose its instant velocity due to these
scattering mechanisms (see below equation (8)). The remaining terms in equation (7) describe
the relaxation of the cross-correlation function. The first-order linear differential equations for
the velocity-to-velocity correlator coefficients can be then written as

dcauto(t)

dt
= −cauto(t)

τp
− cauto(t)

τee
(8)

and
dccross(t)

dt
= −ccross(t)

τp
− ccross(t)

τee
+

exp(−t/τp)

τee
. (9)

Equation (9) is nonhomogeneous: the last positive term reflects the tendency of electrons to
conserve the lattice noise between themselves.

Taking into account the known initial conditions [1] under equilibrium:

cauto(0) = 1, and ccross(0) = 0, (10)

the auto- and cross-correlation coefficients are given in the form of

cauto(t) = e−t/τc ,

ccross(t) = e−t/τp (1 − e−t/τee ).
(11)

As is seen, the auto-correlation coefficient in equilibrium decreases exponentially with
a combined relaxation time τc = τpτee/(τp + τee). This result describes conventionally the
relaxation of the probe particle velocity correlator. We obtain from the second equation that
the cross-correlation coefficient tends to increase during the time τee, but then decreases to
zero per lattice scattering time.

One can see an important result of the total correlation coefficient

ctotal(t) = cauto(t) + ccross(t) = exp(−t/τp), (12)

which shows that it does not depend on e–e scattering. In accordance with Price and Einstein
relations the diffusion coefficient and the zero-field mobility also do not depend on e–e
scattering. In our model (lattice and electron relaxation time approximation) this conclusion
is obvious because, as is accepted, the electrons do not create any noise but tend to redistribute
lattice noise between them.
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Figure 2. Electron velocity-to-velocity correlation coefficients of δ(ω) type noise. Thermodynamic
equilibrium state. Points—MC, curves—approximation by τee relaxation time.

4. Monte Carlo modelling data

Having the results from a simple analytical model and comparing it with the MC calculations
one can easily estimate various kinetic parameters. We have found the electron scattering time
by lattice of τp ∼ 14 ps from the MC data on total correlation decay (figure 1). Then, one finds
that the e–e scattering time is τee ∼ 9 ps from the auto-correlation function decay. Using these
times, the analytical dependencies calculated with equation (11) coincide reasonably well with
those from the MC data (figure 1).

The characteristic time at which the cross-correlation function reaches its maximum value
in the case of rare lattice scattering is

tmax ≈ τee ln

(
1 +

τp

τee

)
. (13)

In our case tmax ∼ 8.4 ps and ccross(tmax) ∼ 0.33, in agreement with the numerical results
(figure 1).

With the aim of explaining more thoroughly the role of e–e scattering in the velocity-to-
velocity fluctuation phenomena the following two problems were also investigated.

(1) Let the δ(ω)-type noise having spectrum S = Aδ(ω), (ω is the frequency), i.e. with zero
frequency, be generated, for example, only at the initial moment t = 0, and in accordance
with equilibrium electron distribution. This situation is opposite to the δ(t)-type noise
situation (white noise). Then all the lattice scattering mechanisms are switched off and
the electron ensemble is allowed to evolve only under the influence of e–e collisions.
Here we used averaging over the ensemble. The total correlation coefficient then is
ctotal = 1

A

∫
S dω = 1, i.e. the total correlation function remains constant. In this situation

electrons tend to conserve the lattice noise and redistribute it among themselves in a
such way that the auto-correlation function decrease is accompanied by the appearance of
increasing cross-correlation at the same time (figure 2). The latter increases symmetrically
from zero, tending to approach the initial auto-correlation value. It also follows from
equations (11) that in the case of the limit τp → ∞ the auto-correlation coefficient
decreases within time τee, and the cross-correlation coefficient increases within the same
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Figure 3. Electron velocity-to-velocity correlation coefficients of the chaotic part of electron
velocity. Phonon and e–e scattering are included. Thermodynamic equilibrium state. Points—
MC, curves—analytical approximation by τc relaxation time.

time τee, while their sum remains equal 1. This analytical scenario is in accordance with
the MC results presented in figure 2 and with considerations presented in [7, 8]. Note that
the obtained difference in figure 2 between saturated Monte Carlo values and analytical
ones is about 0.067. It is related to the peculiarities of CSR method used, which is intended
to adjust the saturated coefficients to the values

cauto ≈ 1

N
and cmax ≈ N − 1

N
(14)

reported elsewhere [7, 8]. It can be seen that the saturated simulation values depend on the
number N of simulated electrons in the MC ensemble. In our case this number is equal to
N = 15. When the thermostate scattering mechanisms are included together with the e–e
scattering, then, it should be noted, the number of particles in the simulated ensemble for
the convergence of simulation must be taken to be dependent on how much the relaxation
time τp differs from τee. In our case (figure 1) 1–3% accuracy was achieved when the
particle number was equal to N ∼ 10–20 (see also [7, 8]).
The calculation results in figure 2 clearly demonstrate the nature of cross-correlation and
confirm the validity of our phenomenological approach.

(2) One should pay attention to an interesting situation observed for the chaotic part of the
electron velocity δv∗

i (t) = vi (t)−vd(t), i.e. the difference at any instant t between the drift
velocity and the instantaneous electron velocity. The chaotic part of the drift velocity in
the drifting coordinate system does not fluctuate, and the corresponding total correlation
function is equal to zero. In addition, electrons interact among themselves and with the
lattice vibrations. Then it follows from equations (1) and (2) that at any instant one has

�auto(t) = −�cross(t). (15)

The results of calculations (figure 3) show indeed that the total correlation function is
equal to zero and consists of the exponentially decreasing positive auto-correlation and
the symmetrically increasing negative cross-correlation functions. This calculation, as
well as the simulation presented in figure 2, can also serve for MC testing data.
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Figure 4. Electron noise spectral density versus frequency. Thermodynamic equilibrium state.
Points—MC, curves—approximation by equations (16).

In experiments, the spectral density of noise is usually measured. It can be evaluated
from the spectral density of correlation functions in the framework of the presented
phenomenological treatment. The known formulas (for example, see [16]) can be used
for exponentially relaxing total and auto-correlation coefficients. The expression of the
cross-correlation spectrum density can be obtained as the difference between the total and
auto-correlation spectral densities. They are

cω
total = 4τp

(ωτp)2 + 1
,

cω
auto = 4τc

(ωτc)2 + 1

(16)

and

cω
cross = cω

total − cω
auto.

One can see from figure 4 that the results of our simple analytical consideration and the
results of MC calculations are also in a good agreement.

5. Conclusions

The phenomenological approach shows that, in equilibrium, the auto-correlation function
decreases exponentially during the combined scattering time τc when the lattice and e–e
scattering mechanisms are included. The cross-correlation function tends to increase during
the time of the order of τee, but then goes over to zero per lattice scattering time. The
total correlation function decreases during the lattice scattering time τp. The total correlation
function, as well as diffusion coefficient and low-field mobility,do not depend on e–e scattering.
The results of analytical approach are in good agreement with the Monte Carlo simulation,
which confirms the usefulness of our simple analytical model. In fact the obtained results have
a more general meaning. For example, they can be applied to describe the Brownian particle
motion, which includes the interparticle collisions. Up until now only the single particle auto-
correlation behaviour has been describe analytically in the textbooks of fluctuation phenomena
(for example, see [17]).
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